CreatePermission handling and permission tracking. ChannelBind setup and Send forwarding to peers.

This commit is contained in:
ghost 2025-11-12 17:55:14 +01:00
parent 4edc2e5176
commit c77e95afdd
11 changed files with 1206 additions and 189 deletions

View File

@ -62,16 +62,17 @@ Milestone 1 — Protocol Backlog
This milestone focuses on turning the current MVP into a feature-complete TURN core that can be used This milestone focuses on turning the current MVP into a feature-complete TURN core that can be used
reliably by `niom-webrtc`. reliably by `niom-webrtc`.
- **Authentication Hardening**: nonce lifecycle, realm configuration, Argon2-backed credential **Prioritised Backlog (live order)**
storage, and detailed error handling for 401/438 responses. 1. **TURN Data Plane Enablement**`CreatePermission`, `ChannelBind`, Send/Data indications, and
- **TURN Method Coverage**: implement `Allocate` attributes, `CreatePermission`, `ChannelBind`, peer forwarding so allocations actually relay packets between clients and peers.
`Refresh`, and full relay path (peer data forwarding, Send/Data indications). 2. **Authentication Hardening** — nonce lifecycle, realm configuration, Argon2-backed credential
- **Allocation Lifecycle**: timers, refresh logic, cleanup of expired allocations, and resource storage, and detailed error handling for 401/438 responses.
limits per user/IP. 3. **Allocation Lifecycle & Quotas** — timers, refresh requests, cleanup of expired allocations,
- **Protocol Compliance**: FINGERPRINT support, XOR-MAPPED-ADDRESS, IPv6 evaluation, checksum and resource limits per user/IP.
validation, and robustness against malformed packets. 4. **Protocol Compliance Extras** — FINGERPRINT support, XOR-MAPPED-ADDRESS, IPv6 evaluation,
- **Observability & Limits**: structured tracing, metrics, rate limiting, and integration tests checksum validation, and fuzz/interop testing.
(including the bundled `smoke_client`). 5. **Observability & Limits** — structured tracing, metrics, rate limiting, and CI coverage (incl.
the bundled `smoke_client`).
Artifacts that track this milestone live in two places: Artifacts that track this milestone live in two places:
@ -79,6 +80,12 @@ Artifacts that track this milestone live in two places:
2. Inline module docs (`//!`) inside `src/` record the current responsibilities and open backlog 2. Inline module docs (`//!`) inside `src/` record the current responsibilities and open backlog
items for each subsystem as we iterate. items for each subsystem as we iterate.
**Task in progress**
- TURN data plane enablement:
- [x] `CreatePermission` handling and permission tracking
- [x] `ChannelBind` setup and `Send` forwarding to peers
- [ ] ChannelData framing and Data Indication responses from relay to client
License: MIT License: MIT
Smoke-Test (End-to-End) Smoke-Test (End-to-End)

View File

@ -3,6 +3,7 @@
use std::collections::HashMap; use std::collections::HashMap;
use std::net::SocketAddr; use std::net::SocketAddr;
use std::sync::{Arc, Mutex}; use std::sync::{Arc, Mutex};
use std::time::{Duration, Instant};
use tokio::net::UdpSocket; use tokio::net::UdpSocket;
use tracing::info; use tracing::info;
@ -12,6 +13,8 @@ pub struct Allocation {
pub relay_addr: SocketAddr, pub relay_addr: SocketAddr,
// keep the socket so it stays bound // keep the socket so it stays bound
_socket: Arc<UdpSocket>, _socket: Arc<UdpSocket>,
permissions: Arc<Mutex<HashMap<SocketAddr, Instant>>>,
channel_bindings: Arc<Mutex<HashMap<u16, (SocketAddr, Instant)>>>,
} }
#[derive(Clone, Default)] #[derive(Clone, Default)]
@ -20,11 +23,19 @@ pub struct AllocationManager {
} }
impl AllocationManager { impl AllocationManager {
pub fn new() -> Self { Self { inner: Arc::new(Mutex::new(HashMap::new())) } } pub fn new() -> Self {
Self {
inner: Arc::new(Mutex::new(HashMap::new())),
}
}
/// Create a relay UDP socket for the given client and spawn a relay loop that forwards /// Create a relay UDP socket for the given client and spawn a relay loop that forwards
/// any packets received on the relay socket back to the client via the provided server socket. /// any packets received on the relay socket back to the client via the provided server socket.
pub async fn allocate_for(&self, client: SocketAddr, server_sock: Arc<UdpSocket>) -> anyhow::Result<SocketAddr> { pub async fn allocate_for(
&self,
client: SocketAddr,
server_sock: Arc<UdpSocket>,
) -> anyhow::Result<SocketAddr> {
// bind relay socket to OS-chosen port // bind relay socket to OS-chosen port
let relay = UdpSocket::bind("0.0.0.0:0").await?; let relay = UdpSocket::bind("0.0.0.0:0").await?;
let relay_local = relay.local_addr()?; let relay_local = relay.local_addr()?;
@ -39,7 +50,10 @@ impl AllocationManager {
loop { loop {
match relay_clone.recv_from(&mut buf).await { match relay_clone.recv_from(&mut buf).await {
Ok((len, src)) => { Ok((len, src)) => {
info!("relay got {} bytes from {} for client {}", len, src, client_clone); info!(
"relay got {} bytes from {} for client {}",
len, src, client_clone
);
// forward to client via server socket // forward to client via server socket
let _ = server_sock_clone.send_to(&buf[..len], client_clone).await; let _ = server_sock_clone.send_to(&buf[..len], client_clone).await;
} }
@ -51,7 +65,13 @@ impl AllocationManager {
} }
}); });
let alloc = Allocation { client, relay_addr: relay_local, _socket: relay_arc }; let alloc = Allocation {
client,
relay_addr: relay_local,
_socket: relay_arc,
permissions: Arc::new(Mutex::new(HashMap::new())),
channel_bindings: Arc::new(Mutex::new(HashMap::new())),
};
tracing::info!("created allocation for {} -> {}", client, relay_local); tracing::info!("created allocation for {} -> {}", client, relay_local);
let mut m = self.inner.lock().unwrap(); let mut m = self.inner.lock().unwrap();
m.insert(client, alloc); m.insert(client, alloc);
@ -62,4 +82,68 @@ impl AllocationManager {
let m = self.inner.lock().unwrap(); let m = self.inner.lock().unwrap();
m.get(client).cloned() m.get(client).cloned()
} }
/// Register a permission for the given client allocation so the relay can forward packets
/// to the specified peer address. Permissions currently expire after a static timeout.
pub fn add_permission(&self, client: SocketAddr, peer: SocketAddr) -> anyhow::Result<()> {
let mut guard = self.inner.lock().unwrap();
let alloc = guard
.get_mut(&client)
.ok_or_else(|| anyhow::anyhow!("allocation not found"))?;
let mut perms = alloc.permissions.lock().unwrap();
prune_permissions(&mut perms);
perms.insert(peer, Instant::now() + PERMISSION_LIFETIME);
Ok(())
}
/// Associate a TURN channel number with a specific peer socket for the allocation.
pub fn add_channel_binding(
&self,
client: SocketAddr,
channel: u16,
peer: SocketAddr,
) -> anyhow::Result<()> {
let mut guard = self.inner.lock().unwrap();
let alloc = guard
.get_mut(&client)
.ok_or_else(|| anyhow::anyhow!("allocation not found"))?;
let mut bindings = alloc.channel_bindings.lock().unwrap();
prune_channel_bindings(&mut bindings);
bindings.insert(channel, (peer, Instant::now() + PERMISSION_LIFETIME));
Ok(())
}
}
impl Allocation {
/// Check whether a peer address is currently permitted for this allocation.
pub fn is_peer_allowed(&self, peer: &SocketAddr) -> bool {
let mut perms = self.permissions.lock().unwrap();
prune_permissions(&mut perms);
perms.contains_key(peer)
}
/// Resolve an active channel binding to its peer socket, if still valid.
pub fn channel_peer(&self, channel: u16) -> Option<SocketAddr> {
let mut bindings = self.channel_bindings.lock().unwrap();
prune_channel_bindings(&mut bindings);
bindings.get(&channel).map(|(peer, _)| *peer)
}
/// Forward payload to a TURN peer via the relay socket.
pub async fn send_to_peer(&self, peer: SocketAddr, data: &[u8]) -> anyhow::Result<usize> {
let sent = self._socket.send_to(data, peer).await?;
Ok(sent)
}
}
const PERMISSION_LIFETIME: Duration = Duration::from_secs(300);
fn prune_permissions(perms: &mut HashMap<SocketAddr, Instant>) {
let now = Instant::now();
perms.retain(|_, expiry| *expiry > now);
}
fn prune_channel_bindings(bindings: &mut HashMap<u16, (SocketAddr, Instant)>) {
let now = Instant::now();
bindings.retain(|_, (_, expiry)| *expiry > now);
} }

View File

@ -1,8 +1,8 @@
//! Authentication helpers and the in-memory credential store used for the MVP server. //! Authentication helpers and the in-memory credential store used for the MVP server.
//! Backlog: Argon2-backed storage, nonce lifecycle, and integration with persistent secrets. //! Backlog: Argon2-backed storage, nonce lifecycle, and integration with persistent secrets.
use crate::traits::CredentialStore;
use async_trait::async_trait; use async_trait::async_trait;
use std::sync::Arc; use std::sync::Arc;
use crate::traits::CredentialStore;
/// Simple in-memory credential store for MVP /// Simple in-memory credential store for MVP
#[derive(Clone, Default)] #[derive(Clone, Default)]
@ -13,7 +13,9 @@ pub struct InMemoryStore {
impl InMemoryStore { impl InMemoryStore {
pub fn new() -> Self { pub fn new() -> Self {
Self { inner: Arc::new(std::sync::Mutex::new(std::collections::HashMap::new())) } Self {
inner: Arc::new(std::sync::Mutex::new(std::collections::HashMap::new())),
}
} }
pub fn insert(&self, user: impl Into<String>, password: impl Into<String>) { pub fn insert(&self, user: impl Into<String>, password: impl Into<String>) {

View File

@ -2,8 +2,8 @@ use bytes::BytesMut;
use niom_turn::constants::*; use niom_turn::constants::*;
// use niom_turn::stun; // not needed; use specific functions via path when required // use niom_turn::stun; // not needed; use specific functions via path when required
use std::net::SocketAddr; use std::net::SocketAddr;
use tokio::net::UdpSocket;
use std::time::Duration; use std::time::Duration;
use tokio::net::UdpSocket;
// Use shared decoder from library: niom_turn::stun::decode_xor_relayed_address // Use shared decoder from library: niom_turn::stun::decode_xor_relayed_address
@ -29,15 +29,19 @@ async fn main() -> anyhow::Result<()> {
buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes()); buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes());
buf.extend_from_slice(&(uname.len() as u16).to_be_bytes()); buf.extend_from_slice(&(uname.len() as u16).to_be_bytes());
buf.extend_from_slice(uname); buf.extend_from_slice(uname);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// MESSAGE-INTEGRITY placeholder // MESSAGE-INTEGRITY placeholder
let mi_attr_offset = buf.len(); let mi_attr_offset = buf.len();
buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes()); buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes());
buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes())); buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes()));
let mi_val_pos = buf.len(); let mi_val_pos = buf.len();
buf.extend_from_slice(&[0u8;20]); buf.extend_from_slice(&[0u8; 20]);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// fix length // fix length
let total_len = (buf.len() - 20) as u16; let total_len = (buf.len() - 20) as u16;
@ -47,13 +51,15 @@ async fn main() -> anyhow::Result<()> {
// compute HMAC over bytes up to MI attribute header // compute HMAC over bytes up to MI attribute header
{ {
use hmac::{Hmac, Mac}; use hmac::{Hmac, Mac};
use sha1::Sha1; use sha1::Sha1;
type HmacSha1 = Hmac<Sha1>; type HmacSha1 = Hmac<Sha1>;
let mut mac = HmacSha1::new_from_slice(password.as_bytes()).expect("HMAC key"); let mut mac = HmacSha1::new_from_slice(password.as_bytes()).expect("HMAC key");
mac.update(&buf[..mi_attr_offset]); mac.update(&buf[..mi_attr_offset]);
let res = mac.finalize().into_bytes(); let res = mac.finalize().into_bytes();
for i in 0..20 { buf[mi_val_pos + i] = res[i]; } for i in 0..20 {
buf[mi_val_pos + i] = res[i];
}
} }
// send Allocate // send Allocate
@ -64,13 +70,14 @@ async fn main() -> anyhow::Result<()> {
let (len, _addr) = local.recv_from(&mut r).await?; let (len, _addr) = local.recv_from(&mut r).await?;
println!("got {} bytes", len); println!("got {} bytes", len);
let resp = &r[..len]; let resp = &r[..len];
// expect success (RESP_BINDING_SUCCESS) with XOR-RELAYED-ADDRESS attr // expect success (METHOD_ALLOCATE | CLASS_SUCCESS) with XOR-RELAYED-ADDRESS attr
if resp.len() < 20 { if resp.len() < 20 {
anyhow::bail!("response too short"); anyhow::bail!("response too short");
} }
let typ = u16::from_be_bytes([resp[0], resp[1]]); let typ = u16::from_be_bytes([resp[0], resp[1]]);
println!("resp type 0x{:04x}", typ); println!("resp type 0x{:04x}", typ);
if typ != RESP_BINDING_SUCCESS { let expected_type = METHOD_ALLOCATE | CLASS_SUCCESS;
if typ != expected_type {
anyhow::bail!("expected success response, got 0x{:04x}", typ); anyhow::bail!("expected success response, got 0x{:04x}", typ);
} }
// parse attributes // parse attributes
@ -79,18 +86,22 @@ async fn main() -> anyhow::Result<()> {
let mut offset = 20; let mut offset = 20;
let mut relay_addr_opt: Option<SocketAddr> = None; let mut relay_addr_opt: Option<SocketAddr> = None;
while offset + 4 <= total { while offset + 4 <= total {
let atype = u16::from_be_bytes([resp[offset], resp[offset+1]]); let atype = u16::from_be_bytes([resp[offset], resp[offset + 1]]);
let alen = u16::from_be_bytes([resp[offset+2], resp[offset+3]]) as usize; let alen = u16::from_be_bytes([resp[offset + 2], resp[offset + 3]]) as usize;
offset += 4; offset += 4;
if offset + alen > total { break; } if offset + alen > total {
break;
}
println!("attr type=0x{:04x} len={}", atype, alen); println!("attr type=0x{:04x} len={}", atype, alen);
println!("raw: {}", hex::encode(&resp[offset..offset+alen])); println!("raw: {}", hex::encode(&resp[offset..offset + alen]));
if atype == ATTR_XOR_RELAYED_ADDRESS { if atype == ATTR_XOR_RELAYED_ADDRESS {
// XOR-RELAYED-ADDRESS: decode via shared library function // XOR-RELAYED-ADDRESS: decode via shared library function
if let Some(sa) = niom_turn::stun::decode_xor_relayed_address(&resp[offset..offset+alen], &trans) { if let Some(sa) =
relay_addr_opt = Some(sa); niom_turn::stun::decode_xor_relayed_address(&resp[offset..offset + alen], &trans)
} {
relay_addr_opt = Some(sa);
} }
}
offset += alen; offset += alen;
let pad = (4 - (alen % 4)) % 4; let pad = (4 - (alen % 4)) % 4;
offset += pad; offset += pad;
@ -114,7 +125,12 @@ async fn main() -> anyhow::Result<()> {
println!("received {} bytes from {}", l, src); println!("received {} bytes from {}", l, src);
let got = &buf2[..l]; let got = &buf2[..l];
println!("payload: {:?}", got); println!("payload: {:?}", got);
if got == payload { println!("relay test success"); Ok(()) } else { anyhow::bail!("payload mismatch") } if got == payload {
println!("relay test success");
Ok(())
} else {
anyhow::bail!("payload mismatch")
}
} }
Ok(Err(e)) => anyhow::bail!("recv error: {:?}", e), Ok(Err(e)) => anyhow::bail!("recv error: {:?}", e),
Err(_) => anyhow::bail!("no forwarded packet received: timeout"), Err(_) => anyhow::bail!("no forwarded packet received: timeout"),

View File

@ -1,7 +1,7 @@
use bytes::BytesMut; use bytes::BytesMut;
use niom_turn::constants::*;
use std::net::SocketAddr; use std::net::SocketAddr;
use tokio::net::UdpSocket; use tokio::net::UdpSocket;
use niom_turn::constants::*;
#[tokio::main] #[tokio::main]
async fn main() -> anyhow::Result<()> { async fn main() -> anyhow::Result<()> {
@ -25,15 +25,19 @@ async fn main() -> anyhow::Result<()> {
buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes()); buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes());
buf.extend_from_slice(&(uname.len() as u16).to_be_bytes()); buf.extend_from_slice(&(uname.len() as u16).to_be_bytes());
buf.extend_from_slice(uname); buf.extend_from_slice(uname);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// MESSAGE-INTEGRITY placeholder // MESSAGE-INTEGRITY placeholder
let mi_attr_offset = buf.len(); let mi_attr_offset = buf.len();
buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes()); buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes());
buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes())); buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes()));
let mi_val_pos = buf.len(); let mi_val_pos = buf.len();
buf.extend_from_slice(&[0u8;20]); buf.extend_from_slice(&[0u8; 20]);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// fix length // fix length
let total_len = (buf.len() - 20) as u16; let total_len = (buf.len() - 20) as u16;
@ -43,13 +47,15 @@ async fn main() -> anyhow::Result<()> {
// compute HMAC over bytes up to MI attribute header // compute HMAC over bytes up to MI attribute header
{ {
use hmac::{Hmac, Mac}; use hmac::{Hmac, Mac};
use sha1::Sha1; use sha1::Sha1;
type HmacSha1 = Hmac<Sha1>; type HmacSha1 = Hmac<Sha1>;
let mut mac = HmacSha1::new_from_slice(password.as_bytes()).expect("HMAC key"); let mut mac = HmacSha1::new_from_slice(password.as_bytes()).expect("HMAC key");
mac.update(&buf[..mi_attr_offset]); mac.update(&buf[..mi_attr_offset]);
let res = mac.finalize().into_bytes(); let res = mac.finalize().into_bytes();
for i in 0..20 { buf[mi_val_pos + i] = res[i]; } for i in 0..20 {
buf[mi_val_pos + i] = res[i];
}
} }
// send // send

View File

@ -1,14 +1,16 @@
//! Central constants for STUN/TURN implementations (magic cookie, attribute types, methods) //! Central constants for STUN/TURN implementations (magic cookie, attribute types, methods)
pub const MAGIC_COOKIE_U32: u32 = 0x2112A442; pub const MAGIC_COOKIE_U32: u32 = 0x2112A442;
pub const MAGIC_COOKIE_BYTES: [u8;4] = MAGIC_COOKIE_U32.to_be_bytes(); pub const MAGIC_COOKIE_BYTES: [u8; 4] = MAGIC_COOKIE_U32.to_be_bytes();
// STUN Methods/Message Types (only those used in this MVP) // STUN Methods/Message Types (only those used in this MVP)
pub const METHOD_BINDING: u16 = 0x0001; pub const METHOD_BINDING: u16 = 0x0001;
pub const METHOD_ALLOCATE: u16 = 0x0003; pub const METHOD_ALLOCATE: u16 = 0x0003;
pub const METHOD_CREATE_PERMISSION: u16 = 0x0008;
// Common response/error types pub const METHOD_REFRESH: u16 = 0x0004;
pub const RESP_BINDING_SUCCESS: u16 = 0x0101; pub const METHOD_SEND: u16 = 0x0006;
pub const METHOD_DATA: u16 = 0x0007;
pub const METHOD_CHANNEL_BIND: u16 = 0x0009;
// STUN/TURN class bits per RFC5389/RFC5766 // STUN/TURN class bits per RFC5389/RFC5766
pub const CLASS_SUCCESS: u16 = 0x0100; pub const CLASS_SUCCESS: u16 = 0x0100;
@ -17,11 +19,16 @@ pub const CLASS_ERROR: u16 = 0x0110;
// Common attribute types // Common attribute types
pub const ATTR_USERNAME: u16 = 0x0006; pub const ATTR_USERNAME: u16 = 0x0006;
pub const ATTR_MESSAGE_INTEGRITY: u16 = 0x0008; pub const ATTR_MESSAGE_INTEGRITY: u16 = 0x0008;
pub const ATTR_ERROR_CODE: u16 = 0x0009;
pub const ATTR_CHANNEL_NUMBER: u16 = 0x000C;
pub const ATTR_LIFETIME: u16 = 0x000D;
pub const ATTR_REALM: u16 = 0x0014; pub const ATTR_REALM: u16 = 0x0014;
pub const ATTR_NONCE: u16 = 0x0015; pub const ATTR_NONCE: u16 = 0x0015;
pub const ATTR_XOR_PEER_ADDRESS: u16 = 0x0012;
// TURN attrs // TURN attrs
pub const ATTR_XOR_RELAYED_ADDRESS: u16 = 0x0016; pub const ATTR_XOR_RELAYED_ADDRESS: u16 = 0x0016;
pub const ATTR_DATA: u16 = 0x0013;
// Some helper values // Some helper values
pub const FAMILY_IPV4: u8 = 0x01; pub const FAMILY_IPV4: u8 = 0x01;
@ -31,4 +38,3 @@ pub const FINGERPRINT_XOR: u32 = 0x5354554e;
// Length of HMAC-SHA1 (MESSAGE-INTEGRITY) // Length of HMAC-SHA1 (MESSAGE-INTEGRITY)
pub const HMAC_SHA1_LEN: usize = 20; pub const HMAC_SHA1_LEN: usize = 20;

View File

@ -1,13 +1,13 @@
//! Library root for niom-turn shared modules //! Library root for niom-turn shared modules
pub mod constants;
pub mod stun;
pub mod auth;
pub mod traits;
pub mod models;
pub mod alloc; pub mod alloc;
pub mod auth;
pub mod config; pub mod config;
pub mod constants;
pub mod models;
pub mod stun;
pub mod tls; pub mod tls;
pub mod traits;
pub use crate::alloc::*;
pub use crate::auth::*; pub use crate::auth::*;
pub use crate::stun::*; pub use crate::stun::*;
pub use crate::alloc::*;

View File

@ -3,15 +3,18 @@
use std::net::SocketAddr; use std::net::SocketAddr;
use std::sync::Arc; use std::sync::Arc;
use tokio::net::UdpSocket; use tokio::net::UdpSocket;
use tracing::{info, error}; use tracing::{error, info};
// Use the library crate's public modules instead of local `mod` declarations. // Use the library crate's public modules instead of local `mod` declarations.
use niom_turn::constants::*;
use niom_turn::auth::InMemoryStore;
use niom_turn::stun::{parse_message, build_401_response, find_message_integrity, validate_message_integrity, build_success_response, encode_xor_relayed_address};
use niom_turn::traits::CredentialStore;
use niom_turn::alloc::AllocationManager; use niom_turn::alloc::AllocationManager;
use niom_turn::auth::InMemoryStore;
use niom_turn::config::Config; use niom_turn::config::Config;
use niom_turn::constants::*;
use niom_turn::stun::{
build_401_response, build_error_response, build_success_response, decode_xor_peer_address,
encode_xor_relayed_address, find_message_integrity, parse_message, validate_message_integrity,
};
use niom_turn::traits::CredentialStore;
#[tokio::main] #[tokio::main]
async fn main() -> anyhow::Result<()> { async fn main() -> anyhow::Result<()> {
@ -19,14 +22,17 @@ async fn main() -> anyhow::Result<()> {
info!("niom-turn starting"); info!("niom-turn starting");
// config: try to load appsettings.json, otherwise fall back to defaults // Bootstrap configuration: prefer appsettings.json, otherwise rely on baked-in demo defaults.
let cfg = match Config::load_default() { let cfg = match Config::load_default() {
Ok(c) => { Ok(c) => {
info!("loaded config from appsettings.json"); info!("loaded config from appsettings.json");
c c
} }
Err(e) => { Err(e) => {
info!("no appsettings.json found or failed to load: {} — using defaults", e); info!(
"no appsettings.json found or failed to load: {} — using defaults",
e
);
// defaults // defaults
Config { Config {
server: niom_turn::config::ServerOptions { server: niom_turn::config::ServerOptions {
@ -34,27 +40,30 @@ async fn main() -> anyhow::Result<()> {
tls_cert: None, tls_cert: None,
tls_key: None, tls_key: None,
}, },
credentials: vec![niom_turn::config::CredentialEntry { username: "testuser".into(), password: "secretpassword".into() }], credentials: vec![niom_turn::config::CredentialEntry {
username: "testuser".into(),
password: "secretpassword".into(),
}],
} }
} }
}; };
let bind_addr: SocketAddr = cfg.server.bind.parse()?; let bind_addr: SocketAddr = cfg.server.bind.parse()?;
// Initialize credential store and populate from config // Materialise the credential backend before starting network endpoints.
let creds = InMemoryStore::new(); let creds = InMemoryStore::new();
for c in cfg.credentials.iter() { for c in cfg.credentials.iter() {
creds.insert(&c.username, &c.password); creds.insert(&c.username, &c.password);
} }
// UDP listener for TURN/STUN // Bind the UDP socket that receives STUN/TURN traffic from WebRTC clients.
let udp = UdpSocket::bind(bind_addr).await?; let udp = UdpSocket::bind(bind_addr).await?;
let udp = Arc::new(udp); let udp = Arc::new(udp);
// allocation manager // allocation manager
let alloc_mgr = AllocationManager::new(); let alloc_mgr = AllocationManager::new();
// spawn packet handling loop // Spawn the asynchronous packet loop that handles all UDP requests.
let udp_clone = udp.clone(); let udp_clone = udp.clone();
let creds_clone = creds.clone(); let creds_clone = creds.clone();
let alloc_clone = alloc_mgr.clone(); let alloc_clone = alloc_mgr.clone();
@ -64,34 +73,53 @@ async fn main() -> anyhow::Result<()> {
} }
}); });
// If TLS cert/key are present in config, start a TLS-backed listener (turns) // Optionally start the TLS listener so `turns:` clients can connect via TCP/TLS.
if let (Some(cert), Some(key)) = (cfg.server.tls_cert.clone(), cfg.server.tls_key.clone()) { if let (Some(cert), Some(key)) = (cfg.server.tls_cert.clone(), cfg.server.tls_key.clone()) {
let udp_for_tls = udp.clone(); let udp_for_tls = udp.clone();
let creds_for_tls = creds.clone(); let creds_for_tls = creds.clone();
let alloc_for_tls = alloc_mgr.clone(); let alloc_for_tls = alloc_mgr.clone();
tokio::spawn(async move { tokio::spawn(async move {
if let Err(e) = niom_turn::tls::serve_tls("0.0.0.0:5349", &cert, &key, udp_for_tls, creds_for_tls, alloc_for_tls).await { if let Err(e) = niom_turn::tls::serve_tls(
"0.0.0.0:5349",
&cert,
&key,
udp_for_tls,
creds_for_tls,
alloc_for_tls,
)
.await
{
error!("tls serve failed: {:?}", e); error!("tls serve failed: {:?}", e);
} }
}); });
} }
// keep running // Keep the runtime alive while background tasks process packets.
loop { loop {
tokio::time::sleep(std::time::Duration::from_secs(60)).await; tokio::time::sleep(std::time::Duration::from_secs(60)).await;
} }
} }
async fn udp_reader_loop(udp: Arc<UdpSocket>, creds: InMemoryStore, allocs: AllocationManager) -> anyhow::Result<()> { async fn udp_reader_loop(
udp: Arc<UdpSocket>,
creds: InMemoryStore,
allocs: AllocationManager,
) -> anyhow::Result<()> {
let mut buf = vec![0u8; 1500]; let mut buf = vec![0u8; 1500];
loop { loop {
// Read the next datagram and keep peer metadata for follow-up responses.
let (len, peer) = udp.recv_from(&mut buf).await?; let (len, peer) = udp.recv_from(&mut buf).await?;
tracing::debug!("got {} bytes from {}", len, peer); tracing::debug!("got {} bytes from {}", len, peer);
// Minimal STUN/TURN detection: parse STUN messages and send 401 challenge // Minimal STUN/TURN detection: parse STUN messages and send 401 challenge
if let Ok(msg) = parse_message(&buf[..len]) { if let Ok(msg) = parse_message(&buf[..len]) {
tracing::info!("STUN/TURN message from {} type=0x{:04x} len={}", peer, msg.header.msg_type, len); tracing::info!(
// If MESSAGE-INTEGRITY present, attempt validation using credential store "STUN/TURN message from {} type=0x{:04x} len={}",
peer,
msg.header.msg_type,
len
);
// Fast-path authenticated requests when MESSAGE-INTEGRITY can be validated.
if let Some(_mi_attr) = find_message_integrity(&msg) { if let Some(_mi_attr) = find_message_integrity(&msg) {
// For MVP we expect username attribute (USERNAME) to be present // For MVP we expect username attribute (USERNAME) to be present
let username_attr = msg.attributes.iter().find(|a| a.typ == ATTR_USERNAME); let username_attr = msg.attributes.iter().find(|a| a.typ == ATTR_USERNAME);
@ -103,39 +131,312 @@ async fn udp_reader_loop(udp: Arc<UdpSocket>, creds: InMemoryStore, allocs: Allo
if let Some(password) = pw { if let Some(password) = pw {
let valid = validate_message_integrity(&msg, &password); let valid = validate_message_integrity(&msg, &password);
if valid { if valid {
tracing::info!("MI valid for user {}", username); tracing::info!("MI valid for user {}", username);
// If this is an Allocate request, perform allocation // Handle authenticated Allocate to mint a relay binding for the client.
if msg.header.msg_type == METHOD_ALLOCATE { if msg.header.msg_type == METHOD_ALLOCATE {
match allocs.allocate_for(peer, udp.clone()).await { match allocs.allocate_for(peer, udp.clone()).await {
Ok(relay_addr) => { Ok(relay_addr) => {
use bytes::BytesMut; use bytes::BytesMut;
let mut out = BytesMut::new(); let mut out = BytesMut::new();
out.extend_from_slice(&RESP_BINDING_SUCCESS.to_be_bytes()); let success_type = msg.header.msg_type | CLASS_SUCCESS;
out.extend_from_slice(&0u16.to_be_bytes()); out.extend_from_slice(&success_type.to_be_bytes());
out.extend_from_slice(&MAGIC_COOKIE_U32.to_be_bytes()); out.extend_from_slice(&0u16.to_be_bytes());
out.extend_from_slice(&msg.header.transaction_id); out.extend_from_slice(&MAGIC_COOKIE_U32.to_be_bytes());
// RFC: XOR-RELAYED-ADDRESS (0x0016) out.extend_from_slice(&msg.header.transaction_id);
let attr_val = encode_xor_relayed_address(&relay_addr, &msg.header.transaction_id); // RFC: XOR-RELAYED-ADDRESS (0x0016)
out.extend_from_slice(&ATTR_XOR_RELAYED_ADDRESS.to_be_bytes()); let attr_val = encode_xor_relayed_address(
out.extend_from_slice(&((attr_val.len() as u16).to_be_bytes())); &relay_addr,
out.extend_from_slice(&attr_val); &msg.header.transaction_id,
while (out.len() % 4) != 0 { out.extend_from_slice(&[0]); } );
let total_len = (out.len() - 20) as u16; out.extend_from_slice(
let len_bytes = total_len.to_be_bytes(); &ATTR_XOR_RELAYED_ADDRESS.to_be_bytes(),
out[2] = len_bytes[0]; out[3] = len_bytes[1]; );
let vec_out = out.to_vec(); out.extend_from_slice(
tracing::info!("sending allocate success (mi-valid) -> {} bytes hex={} ", vec_out.len(), hex::encode(&vec_out)); &((attr_val.len() as u16).to_be_bytes()),
let _ = udp.send_to(&vec_out, &peer).await; );
continue; out.extend_from_slice(&attr_val);
while (out.len() % 4) != 0 {
out.extend_from_slice(&[0]);
} }
Err(e) => tracing::error!("allocate failed after MI valid: {:?}", e), let total_len = (out.len() - 20) as u16;
let len_bytes = total_len.to_be_bytes();
out[2] = len_bytes[0];
out[3] = len_bytes[1];
let vec_out = out.to_vec();
tracing::info!("sending allocate success (mi-valid) -> {} bytes hex={} ", vec_out.len(), hex::encode(&vec_out));
let _ = udp.send_to(&vec_out, &peer).await;
continue;
}
Err(e) => tracing::error!(
"allocate failed after MI valid: {:?}",
e
),
}
} else if msg.header.msg_type == METHOD_CREATE_PERMISSION {
// Permission updates extend the list of peer addresses an allocation may forward to.
if allocs.get_allocation(&peer).is_none() {
tracing::warn!(
"create-permission without allocation from {}",
peer
);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
let mut added = 0usize;
for attr in msg
.attributes
.iter()
.filter(|a| a.typ == ATTR_XOR_PEER_ADDRESS)
{
if let Some(peer_addr) = decode_xor_peer_address(
&attr.value,
&msg.header.transaction_id,
) {
match allocs.add_permission(peer, peer_addr) {
Ok(()) => {
tracing::info!(
"added permission for {} -> {}",
peer,
peer_addr
);
added += 1;
}
Err(e) => {
tracing::error!("failed to persist permission {} -> {}: {:?}", peer, peer_addr, e);
}
}
} else {
tracing::warn!(
"invalid XOR-PEER-ADDRESS in request from {}",
peer
);
} }
} }
// default success response
let resp = build_success_response(&msg.header); if added == 0 {
let _ = udp.send_to(&resp, &peer).await; let resp = build_error_response(
&msg.header,
400,
"No valid XOR-PEER-ADDRESS",
);
let _ = udp.send_to(&resp, &peer).await;
} else {
let resp = build_success_response(&msg.header);
let _ = udp.send_to(&resp, &peer).await;
}
continue; continue;
} else { } else if msg.header.msg_type == METHOD_CHANNEL_BIND {
let allocation = match allocs.get_allocation(&peer) {
Some(a) => a,
None => {
tracing::warn!(
"channel-bind without allocation from {}",
peer
);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
let channel_attr = msg
.attributes
.iter()
.find(|a| a.typ == ATTR_CHANNEL_NUMBER);
let peer_attr = msg
.attributes
.iter()
.find(|a| a.typ == ATTR_XOR_PEER_ADDRESS);
let channel = match channel_attr.and_then(|attr| {
if attr.value.len() >= 4 {
Some(u16::from_be_bytes([attr.value[0], attr.value[1]]))
} else {
None
}
}) {
Some(c) => c,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing CHANNEL-NUMBER",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
if channel < 0x4000 || channel > 0x7FFF {
let resp = build_error_response(
&msg.header,
400,
"Channel Out Of Range",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
let peer_addr = match peer_attr.and_then(|attr| {
decode_xor_peer_address(
&attr.value,
&msg.header.transaction_id,
)
}) {
Some(addr) => addr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing XOR-PEER-ADDRESS",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
if !allocation.is_peer_allowed(&peer_addr) {
let resp = build_error_response(
&msg.header,
403,
"Peer Not Permitted",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
match allocs.add_channel_binding(peer, channel, peer_addr) {
Ok(()) => {
tracing::info!(
"bound channel 0x{:04x} for {} -> {}",
channel,
peer,
peer_addr
);
let resp = build_success_response(&msg.header);
let _ = udp.send_to(&resp, &peer).await;
}
Err(e) => {
tracing::error!(
"failed to add channel binding {} -> {} (channel 0x{:04x}): {:?}",
peer, peer_addr, channel, e
);
let resp = build_error_response(
&msg.header,
500,
"Channel Binding Failed",
);
let _ = udp.send_to(&resp, &peer).await;
}
}
continue;
} else if msg.header.msg_type == METHOD_SEND {
let allocation = match allocs.get_allocation(&peer) {
Some(a) => a,
None => {
tracing::warn!("send without allocation from {}", peer);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
let peer_attr = msg
.attributes
.iter()
.find(|a| a.typ == ATTR_XOR_PEER_ADDRESS);
let data_attr =
msg.attributes.iter().find(|a| a.typ == ATTR_DATA);
let peer_addr = match peer_attr.and_then(|attr| {
decode_xor_peer_address(
&attr.value,
&msg.header.transaction_id,
)
}) {
Some(addr) => addr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing XOR-PEER-ADDRESS",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
let data_attr = match data_attr {
Some(attr) => attr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing DATA Attribute",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
};
if !allocation.is_peer_allowed(&peer_addr) {
let resp = build_error_response(
&msg.header,
403,
"Peer Not Permitted",
);
let _ = udp.send_to(&resp, &peer).await;
continue;
}
match allocation.send_to_peer(peer_addr, &data_attr.value).await
{
Ok(sent) => {
tracing::info!(
"forwarded {} bytes from {} to peer {}",
sent,
peer,
peer_addr
);
let resp = build_success_response(&msg.header);
let _ = udp.send_to(&resp, &peer).await;
}
Err(e) => {
tracing::error!(
"failed to send payload from {} to {}: {:?}",
peer,
peer_addr,
e
);
let resp = build_error_response(
&msg.header,
500,
"Peer Send Failed",
);
let _ = udp.send_to(&resp, &peer).await;
}
}
continue;
}
// Non-specific success path: echo a success response so the client continues handshake.
let resp = build_success_response(&msg.header);
let _ = udp.send_to(&resp, &peer).await;
continue;
} else {
tracing::info!("MI invalid for user {}", username); tracing::info!("MI invalid for user {}", username);
} }
} else { } else {
@ -144,7 +445,7 @@ async fn udp_reader_loop(udp: Arc<UdpSocket>, creds: InMemoryStore, allocs: Allo
} }
} }
} }
// If it's an Allocate request (TURN method ALLOCATE) and MI valid, allocate a relay socket // Allow unauthenticated Allocate to fall back to challenge/early success for now (MVP compatibility).
if msg.header.msg_type == METHOD_ALLOCATE { if msg.header.msg_type == METHOD_ALLOCATE {
// If we reach here without MI, still attempt allocation but we will send a 401 earlier // If we reach here without MI, still attempt allocation but we will send a 401 earlier
let relay = allocs.allocate_for(peer, udp.clone()).await; let relay = allocs.allocate_for(peer, udp.clone()).await;
@ -152,20 +453,29 @@ async fn udp_reader_loop(udp: Arc<UdpSocket>, creds: InMemoryStore, allocs: Allo
Ok(relay_addr) => { Ok(relay_addr) => {
use bytes::BytesMut; use bytes::BytesMut;
let mut out = BytesMut::new(); let mut out = BytesMut::new();
out.extend_from_slice(&RESP_BINDING_SUCCESS.to_be_bytes()); let success_type = msg.header.msg_type | CLASS_SUCCESS;
out.extend_from_slice(&success_type.to_be_bytes());
out.extend_from_slice(&0u16.to_be_bytes()); out.extend_from_slice(&0u16.to_be_bytes());
out.extend_from_slice(&MAGIC_COOKIE_U32.to_be_bytes()); out.extend_from_slice(&MAGIC_COOKIE_U32.to_be_bytes());
out.extend_from_slice(&msg.header.transaction_id); out.extend_from_slice(&msg.header.transaction_id);
let attr_val = encode_xor_relayed_address(&relay_addr, &msg.header.transaction_id); let attr_val =
encode_xor_relayed_address(&relay_addr, &msg.header.transaction_id);
out.extend_from_slice(&ATTR_XOR_RELAYED_ADDRESS.to_be_bytes()); out.extend_from_slice(&ATTR_XOR_RELAYED_ADDRESS.to_be_bytes());
out.extend_from_slice(&((attr_val.len() as u16).to_be_bytes())); out.extend_from_slice(&((attr_val.len() as u16).to_be_bytes()));
out.extend_from_slice(&attr_val); out.extend_from_slice(&attr_val);
while (out.len() % 4) != 0 { out.extend_from_slice(&[0]); } while (out.len() % 4) != 0 {
out.extend_from_slice(&[0]);
}
let total_len = (out.len() - 20) as u16; let total_len = (out.len() - 20) as u16;
let len_bytes = total_len.to_be_bytes(); let len_bytes = total_len.to_be_bytes();
out[2] = len_bytes[0]; out[3] = len_bytes[1]; out[2] = len_bytes[0];
out[3] = len_bytes[1];
let vec_out = out.to_vec(); let vec_out = out.to_vec();
tracing::info!("sending allocate success (no-mi) -> {} bytes hex={} ", vec_out.len(), hex::encode(&vec_out)); tracing::info!(
"sending allocate success (no-mi) -> {} bytes hex={} ",
vec_out.len(),
hex::encode(&vec_out)
);
let _ = udp.send_to(&vec_out, &peer).await; let _ = udp.send_to(&vec_out, &peer).await;
} }
Err(e) => { Err(e) => {
@ -175,7 +485,7 @@ async fn udp_reader_loop(udp: Arc<UdpSocket>, creds: InMemoryStore, allocs: Allo
continue; continue;
} }
// default: send 401 challenge // Everything else receives a 401 challenge so the client can retry with credentials.
let nonce = format!("nonce-{}", uuid::Uuid::new_v4()); let nonce = format!("nonce-{}", uuid::Uuid::new_v4());
let resp = build_401_response(&msg.header, "niom-turn.local", &nonce, 401); let resp = build_401_response(&msg.header, "niom-turn.local", &nonce, 401);
if let Err(e) = udp.send_to(&resp, &peer).await { if let Err(e) = udp.send_to(&resp, &peer).await {

View File

@ -1,3 +1,3 @@
pub mod stun; pub mod stun;
pub use stun::{StunHeader, StunAttribute, StunMessage}; pub use stun::{StunAttribute, StunHeader, StunMessage};

View File

@ -1,38 +1,53 @@
//! STUN/TURN message parsing and builders for the server. //! STUN/TURN message parsing and builders for the server.
//! Backlog: full attribute coverage, fingerprint helpers, IPv6 handling, and fuzz testing. //! Backlog: full attribute coverage, fingerprint helpers, IPv6 handling, and fuzz testing.
use std::convert::TryInto;
use crate::models::stun::{StunHeader, StunAttribute, StunMessage};
use crate::constants::*; use crate::constants::*;
use crate::models::stun::{StunAttribute, StunHeader, StunMessage};
use std::convert::TryInto;
#[derive(thiserror::Error, Debug)] #[derive(thiserror::Error, Debug)]
pub enum ParseError { pub enum ParseError {
#[error("too short")] TooShort, #[error("too short")]
#[error("invalid magic cookie")] InvalidCookie, TooShort,
#[error("attribute overflow")] AttrOverflow, #[error("invalid magic cookie")]
InvalidCookie,
#[error("attribute overflow")]
AttrOverflow,
} }
pub fn parse_message(buf: &[u8]) -> Result<StunMessage, ParseError> { pub fn parse_message(buf: &[u8]) -> Result<StunMessage, ParseError> {
if buf.len() < 20 { return Err(ParseError::TooShort); } if buf.len() < 20 {
return Err(ParseError::TooShort);
}
let msg_type = u16::from_be_bytes(buf[0..2].try_into().unwrap()); let msg_type = u16::from_be_bytes(buf[0..2].try_into().unwrap());
let length = u16::from_be_bytes(buf[2..4].try_into().unwrap()); let length = u16::from_be_bytes(buf[2..4].try_into().unwrap());
let cookie = u32::from_be_bytes(buf[4..8].try_into().unwrap()); let cookie = u32::from_be_bytes(buf[4..8].try_into().unwrap());
if cookie != MAGIC_COOKIE_U32 { return Err(ParseError::InvalidCookie); } if cookie != MAGIC_COOKIE_U32 {
return Err(ParseError::InvalidCookie);
}
let mut trans = [0u8; 12]; let mut trans = [0u8; 12];
trans.copy_from_slice(&buf[8..20]); trans.copy_from_slice(&buf[8..20]);
let mut attrs = Vec::new(); let mut attrs = Vec::new();
let mut offset = 20usize; let mut offset = 20usize;
let total_len = (length as usize) + 20; let total_len = (length as usize) + 20;
if buf.len() < total_len { return Err(ParseError::TooShort); } if buf.len() < total_len {
return Err(ParseError::TooShort);
}
while offset + 4 <= total_len { while offset + 4 <= total_len {
let typ = u16::from_be_bytes(buf[offset..offset+2].try_into().unwrap()); let typ = u16::from_be_bytes(buf[offset..offset + 2].try_into().unwrap());
let attr_len = u16::from_be_bytes(buf[offset+2..offset+4].try_into().unwrap()) as usize; let attr_len = u16::from_be_bytes(buf[offset + 2..offset + 4].try_into().unwrap()) as usize;
let attr_header_offset = offset; let attr_header_offset = offset;
offset += 4; offset += 4;
if offset + attr_len > total_len { return Err(ParseError::AttrOverflow); } if offset + attr_len > total_len {
let value = buf[offset..offset+attr_len].to_vec(); return Err(ParseError::AttrOverflow);
attrs.push(StunAttribute { typ, value, offset: attr_header_offset }); }
let value = buf[offset..offset + attr_len].to_vec();
attrs.push(StunAttribute {
typ,
value,
offset: attr_header_offset,
});
offset += attr_len; offset += attr_len;
// padding to 32-bit boundary // padding to 32-bit boundary
let pad = (4 - (attr_len % 4)) % 4; let pad = (4 - (attr_len % 4)) % 4;
@ -40,7 +55,12 @@ pub fn parse_message(buf: &[u8]) -> Result<StunMessage, ParseError> {
} }
Ok(StunMessage { Ok(StunMessage {
header: StunHeader { msg_type, length, cookie, transaction_id: trans }, header: StunHeader {
msg_type,
length,
cookie,
transaction_id: trans,
},
attributes: attrs, attributes: attrs,
raw: buf[..total_len].to_vec(), raw: buf[..total_len].to_vec(),
}) })
@ -62,14 +82,18 @@ pub fn build_401_response(req: &StunHeader, realm: &str, nonce: &str, _err_code:
buf.extend_from_slice(&ATTR_REALM.to_be_bytes()); buf.extend_from_slice(&ATTR_REALM.to_be_bytes());
buf.extend_from_slice(&(realm_bytes.len() as u16).to_be_bytes()); buf.extend_from_slice(&(realm_bytes.len() as u16).to_be_bytes());
buf.extend_from_slice(realm_bytes); buf.extend_from_slice(realm_bytes);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0]);
}
// NONCE (RFC attr) // NONCE (RFC attr)
let nonce_bytes = nonce.as_bytes(); let nonce_bytes = nonce.as_bytes();
buf.extend_from_slice(&ATTR_NONCE.to_be_bytes()); buf.extend_from_slice(&ATTR_NONCE.to_be_bytes());
buf.extend_from_slice(&(nonce_bytes.len() as u16).to_be_bytes()); buf.extend_from_slice(&(nonce_bytes.len() as u16).to_be_bytes());
buf.extend_from_slice(nonce_bytes); buf.extend_from_slice(nonce_bytes);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0]);
}
// Update length // Update length
let total_len = (buf.len() - 20) as u16; let total_len = (buf.len() - 20) as u16;
@ -80,9 +104,44 @@ pub fn build_401_response(req: &StunHeader, realm: &str, nonce: &str, _err_code:
buf.to_vec() buf.to_vec()
} }
/// Build a generic STUN error response with an ERROR-CODE attribute plus optional reason phrase.
pub fn build_error_response(req: &StunHeader, code: u16, reason: &str) -> Vec<u8> {
use bytes::BytesMut;
let mut buf = BytesMut::new();
let msg_type: u16 = req.msg_type | CLASS_ERROR;
buf.extend_from_slice(&msg_type.to_be_bytes());
buf.extend_from_slice(&0u16.to_be_bytes());
buf.extend_from_slice(&MAGIC_COOKIE_BYTES);
buf.extend_from_slice(&req.transaction_id);
let mut value = Vec::new();
let class = (code / 100) as u8;
let number = (code % 100) as u8;
value.extend_from_slice(&[0, 0]);
value.push(class);
value.push(number);
value.extend_from_slice(reason.as_bytes());
buf.extend_from_slice(&ATTR_ERROR_CODE.to_be_bytes());
buf.extend_from_slice(&(value.len() as u16).to_be_bytes());
buf.extend_from_slice(&value);
while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0]);
}
let total_len = (buf.len() - 20) as u16;
let len_bytes = total_len.to_be_bytes();
buf[2] = len_bytes[0];
buf[3] = len_bytes[1];
buf.to_vec()
}
/// Find MESSAGE-INTEGRITY attribute (ATTR_MESSAGE_INTEGRITY) if present /// Find MESSAGE-INTEGRITY attribute (ATTR_MESSAGE_INTEGRITY) if present
pub fn find_message_integrity(msg: &StunMessage) -> Option<&StunAttribute> { pub fn find_message_integrity(msg: &StunMessage) -> Option<&StunAttribute> {
msg.attributes.iter().find(|a| a.typ == ATTR_MESSAGE_INTEGRITY) msg.attributes
.iter()
.find(|a| a.typ == ATTR_MESSAGE_INTEGRITY)
} }
/// Validate MESSAGE-INTEGRITY using provided key (password). Returns true if valid. /// Validate MESSAGE-INTEGRITY using provided key (password). Returns true if valid.
@ -91,7 +150,9 @@ pub fn find_message_integrity(msg: &StunMessage) -> Option<&StunAttribute> {
pub fn validate_message_integrity(msg: &StunMessage, key: &str) -> bool { pub fn validate_message_integrity(msg: &StunMessage, key: &str) -> bool {
if let Some(mi) = find_message_integrity(msg) { if let Some(mi) = find_message_integrity(msg) {
// MESSAGE-INTEGRITY attribute value is 20 bytes (HMAC-SHA1) // MESSAGE-INTEGRITY attribute value is 20 bytes (HMAC-SHA1)
if mi.value.len() != 20 { return false; } if mi.value.len() != 20 {
return false;
}
// Compute HMAC over the message up to (but excluding) MESSAGE-INTEGRITY attribute header and value // Compute HMAC over the message up to (but excluding) MESSAGE-INTEGRITY attribute header and value
let mi_attr_start = mi.offset; // offset points to attribute header let mi_attr_start = mi.offset; // offset points to attribute header
let msg_slice = &msg.raw[..mi_attr_start]; let msg_slice = &msg.raw[..mi_attr_start];
@ -106,7 +167,7 @@ pub fn validate_message_integrity(msg: &StunMessage, key: &str) -> bool {
pub fn build_success_response(req: &StunHeader) -> Vec<u8> { pub fn build_success_response(req: &StunHeader) -> Vec<u8> {
use bytes::BytesMut; use bytes::BytesMut;
let mut buf = BytesMut::new(); let mut buf = BytesMut::new();
let msg_type: u16 = RESP_BINDING_SUCCESS; // Binding success response (example) let msg_type: u16 = req.msg_type | CLASS_SUCCESS;
buf.extend_from_slice(&msg_type.to_be_bytes()); buf.extend_from_slice(&msg_type.to_be_bytes());
buf.extend_from_slice(&0u16.to_be_bytes()); buf.extend_from_slice(&0u16.to_be_bytes());
buf.extend_from_slice(&MAGIC_COOKIE_BYTES); buf.extend_from_slice(&MAGIC_COOKIE_BYTES);
@ -143,21 +204,23 @@ pub fn compute_message_integrity(key: &str, msg: &[u8]) -> Vec<u8> {
/// Encode an IPv4 SocketAddr into XOR-RELAYED-ADDRESS attribute value. /// Encode an IPv4 SocketAddr into XOR-RELAYED-ADDRESS attribute value.
/// Format (per RFC5389/RFC5766): 1 byte family, 2 byte xport, 4 byte xaddr for IPv4 /// Format (per RFC5389/RFC5766): 1 byte family, 2 byte xport, 4 byte xaddr for IPv4
pub fn encode_xor_relayed_address(addr: &std::net::SocketAddr, _trans_id: &[u8;12]) -> Vec<u8> { pub fn encode_xor_relayed_address(addr: &std::net::SocketAddr, _trans_id: &[u8; 12]) -> Vec<u8> {
use std::net::IpAddr; use std::net::IpAddr;
let mut out = Vec::new(); let mut out = Vec::new();
match addr.ip() { match addr.ip() {
IpAddr::V4(v4) => { IpAddr::V4(v4) => {
out.push(0); // first 8 bits zero per spec out.push(0); // first 8 bits zero per spec
out.push(FAMILY_IPV4); // family: IPv4 out.push(FAMILY_IPV4); // family: IPv4
// xport = port ^ (magic_cookie >> 16) // xport = port ^ (magic_cookie >> 16)
let port = addr.port(); let port = addr.port();
let xport = (port ^ ((MAGIC_COOKIE_U32 >> 16) as u16)) as u16; let xport = (port ^ ((MAGIC_COOKIE_U32 >> 16) as u16)) as u16;
out.extend_from_slice(&xport.to_be_bytes()); out.extend_from_slice(&xport.to_be_bytes());
// xaddr = ipv4 ^ magic_cookie // xaddr = ipv4 ^ magic_cookie
let octets = v4.octets(); let octets = v4.octets();
let cookie_bytes = MAGIC_COOKIE_BYTES; let cookie_bytes = MAGIC_COOKIE_BYTES;
for i in 0..4 { out.push(octets[i] ^ cookie_bytes[i]); } for i in 0..4 {
out.push(octets[i] ^ cookie_bytes[i]);
}
} }
IpAddr::V6(_v6) => { IpAddr::V6(_v6) => {
// For now, we don't support IPv6 in this MVP implementation // For now, we don't support IPv6 in this MVP implementation
@ -168,18 +231,31 @@ pub fn encode_xor_relayed_address(addr: &std::net::SocketAddr, _trans_id: &[u8;1
} }
/// Decode XOR-RELAYED-ADDRESS attribute value into SocketAddr (IPv4 only) /// Decode XOR-RELAYED-ADDRESS attribute value into SocketAddr (IPv4 only)
pub fn decode_xor_relayed_address(value: &[u8], _trans_id: &[u8;12]) -> Option<std::net::SocketAddr> { pub fn decode_xor_relayed_address(
if value.len() < 8 { return None; } value: &[u8],
if value[1] != FAMILY_IPV4 { return None; } // not IPv4 _trans_id: &[u8; 12],
) -> Option<std::net::SocketAddr> {
if value.len() < 8 {
return None;
}
if value[1] != FAMILY_IPV4 {
return None;
} // not IPv4
let xport = u16::from_be_bytes([value[2], value[3]]); let xport = u16::from_be_bytes([value[2], value[3]]);
let port = xport ^ ((MAGIC_COOKIE_U32 >> 16) as u16); let port = xport ^ ((MAGIC_COOKIE_U32 >> 16) as u16);
let cookie_bytes = MAGIC_COOKIE_BYTES; let cookie_bytes = MAGIC_COOKIE_BYTES;
let mut ipb = [0u8;4]; let mut ipb = [0u8; 4];
for i in 0..4 { ipb[i] = value[4 + i] ^ cookie_bytes[i]; } for i in 0..4 {
ipb[i] = value[4 + i] ^ cookie_bytes[i];
}
let ip = std::net::Ipv4Addr::from(ipb); let ip = std::net::Ipv4Addr::from(ipb);
Some(std::net::SocketAddr::new(std::net::IpAddr::V4(ip), port)) Some(std::net::SocketAddr::new(std::net::IpAddr::V4(ip), port))
} }
/// Decode XOR-PEER-ADDRESS / XOR-MAPPED-ADDRESS style attributes (IPv4 only).
pub fn decode_xor_peer_address(value: &[u8], _trans_id: &[u8; 12]) -> Option<std::net::SocketAddr> {
decode_xor_relayed_address(value, _trans_id)
}
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
@ -189,20 +265,25 @@ mod tests {
fn parse_minimal_binding() { fn parse_minimal_binding() {
// Build a minimal STUN Binding request with empty attributes // Build a minimal STUN Binding request with empty attributes
let mut b = Vec::new(); let mut b = Vec::new();
b.extend_from_slice(&METHOD_BINDING.to_be_bytes()); // Binding Request b.extend_from_slice(&METHOD_BINDING.to_be_bytes()); // Binding Request
b.extend_from_slice(&0u16.to_be_bytes()); // length b.extend_from_slice(&0u16.to_be_bytes()); // length
b.extend_from_slice(&MAGIC_COOKIE_BYTES); b.extend_from_slice(&MAGIC_COOKIE_BYTES);
let trans = [1u8; 12]; let trans = [1u8; 12];
b.extend_from_slice(&trans); b.extend_from_slice(&trans);
let msg = parse_message(&b).expect("parse"); let msg = parse_message(&b).expect("parse");
assert_eq!(msg.header.msg_type, METHOD_BINDING); assert_eq!(msg.header.msg_type, METHOD_BINDING);
assert_eq!(msg.header.transaction_id, trans); assert_eq!(msg.header.transaction_id, trans);
assert!(msg.attributes.is_empty()); assert!(msg.attributes.is_empty());
} }
#[test] #[test]
fn build_401_roundtrip() { fn build_401_roundtrip() {
let req = StunHeader { msg_type: METHOD_BINDING, length: 0, cookie: MAGIC_COOKIE_U32, transaction_id: [2u8;12] }; let req = StunHeader {
msg_type: METHOD_BINDING,
length: 0,
cookie: MAGIC_COOKIE_U32,
transaction_id: [2u8; 12],
};
let out = build_401_response(&req, "realm", "nonce", 401); let out = build_401_response(&req, "realm", "nonce", 401);
// parse back should succeed // parse back should succeed
let parsed = parse_message(&out).expect("parse resp"); let parsed = parse_message(&out).expect("parse resp");
@ -218,26 +299,30 @@ mod tests {
// Build message: Binding Request + USERNAME attribute + MESSAGE-INTEGRITY placeholder // Build message: Binding Request + USERNAME attribute + MESSAGE-INTEGRITY placeholder
let mut buf = BytesMut::new(); let mut buf = BytesMut::new();
buf.extend_from_slice(&METHOD_BINDING.to_be_bytes()); // Binding Request buf.extend_from_slice(&METHOD_BINDING.to_be_bytes()); // Binding Request
buf.extend_from_slice(&0u16.to_be_bytes()); // length placeholder buf.extend_from_slice(&0u16.to_be_bytes()); // length placeholder
buf.extend_from_slice(&MAGIC_COOKIE_BYTES); buf.extend_from_slice(&MAGIC_COOKIE_BYTES);
let trans = [9u8; 12]; let trans = [9u8; 12];
buf.extend_from_slice(&trans); buf.extend_from_slice(&trans);
// USERNAME (ATTR_USERNAME) // USERNAME (ATTR_USERNAME)
let uname_bytes = username.as_bytes(); let uname_bytes = username.as_bytes();
buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes()); buf.extend_from_slice(&ATTR_USERNAME.to_be_bytes());
buf.extend_from_slice(&(uname_bytes.len() as u16).to_be_bytes()); buf.extend_from_slice(&(uname_bytes.len() as u16).to_be_bytes());
buf.extend_from_slice(uname_bytes); buf.extend_from_slice(uname_bytes);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// MESSAGE-INTEGRITY placeholder (0x0008) length 20 // MESSAGE-INTEGRITY placeholder (0x0008) length 20
let mi_attr_offset = buf.len(); let mi_attr_offset = buf.len();
buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes()); buf.extend_from_slice(&ATTR_MESSAGE_INTEGRITY.to_be_bytes());
buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes())); buf.extend_from_slice(&((HMAC_SHA1_LEN as u16).to_be_bytes()));
let mi_val_pos = buf.len(); let mi_val_pos = buf.len();
buf.extend_from_slice(&[0u8;20]); buf.extend_from_slice(&[0u8; 20]);
while (buf.len() % 4) != 0 { buf.extend_from_slice(&[0u8]); } while (buf.len() % 4) != 0 {
buf.extend_from_slice(&[0u8]);
}
// Fix length // Fix length
let total_len = (buf.len() - 20) as u16; let total_len = (buf.len() - 20) as u16;
@ -248,7 +333,9 @@ mod tests {
// Compute HMAC over message up to MI attribute header (mi_attr_offset) // Compute HMAC over message up to MI attribute header (mi_attr_offset)
let hmac = compute_message_integrity(password, &buf[..mi_attr_offset]); let hmac = compute_message_integrity(password, &buf[..mi_attr_offset]);
// place first 20 bytes into mi value // place first 20 bytes into mi value
for i in 0..20 { buf[mi_val_pos + i] = hmac[i]; } for i in 0..20 {
buf[mi_val_pos + i] = hmac[i];
}
// Parse and validate // Parse and validate
let parsed = parse_message(&buf).expect("parsed"); let parsed = parse_message(&buf).expect("parsed");

View File

@ -1,19 +1,22 @@
//! TLS listener that wraps the STUN/TURN logic for `turns:` clients. //! TLS listener that wraps the STUN/TURN logic for `turns:` clients.
//! Backlog: ALPN negotiation, TCP relay support, and shared flow-control with the UDP path. //! Backlog: ALPN negotiation, TCP relay support, and shared flow-control with the UDP path.
use std::sync::Arc;
use anyhow::Context; use anyhow::Context;
use tokio::net::TcpListener;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio_rustls::TlsAcceptor;
use tokio_rustls::rustls::{Certificate, PrivateKey, ServerConfig};
use std::fs::File; use std::fs::File;
use std::io::BufReader; use std::io::BufReader;
use std::sync::Arc;
use tokio::io::{AsyncReadExt, AsyncWriteExt};
use tokio::net::TcpListener;
use tokio_rustls::rustls::{Certificate, PrivateKey, ServerConfig};
use tokio_rustls::TlsAcceptor;
use crate::auth::InMemoryStore;
use crate::traits::CredentialStore;
use crate::alloc::AllocationManager; use crate::alloc::AllocationManager;
use crate::stun::{parse_message, build_401_response, find_message_integrity, validate_message_integrity, build_success_response, encode_xor_relayed_address}; use crate::auth::InMemoryStore;
use crate::constants::*; use crate::constants::*;
use crate::stun::{
build_401_response, build_error_response, build_success_response, decode_xor_peer_address,
encode_xor_relayed_address, find_message_integrity, parse_message, validate_message_integrity,
};
use crate::traits::CredentialStore;
fn load_certs(path: &str) -> anyhow::Result<Vec<Certificate>> { fn load_certs(path: &str) -> anyhow::Result<Vec<Certificate>> {
let f = File::open(path).context("opening cert file")?; let f = File::open(path).context("opening cert file")?;
@ -41,7 +44,14 @@ fn load_private_key(path: &str) -> anyhow::Result<PrivateKey> {
/// Start a TLS-backed listener (turns) on the given bind address. /// Start a TLS-backed listener (turns) on the given bind address.
/// This reuses the existing STUN/TURN message handling logic, but sends replies /// This reuses the existing STUN/TURN message handling logic, but sends replies
/// back over the TLS stream rather than UDP. /// back over the TLS stream rather than UDP.
pub async fn serve_tls(bind: &str, cert_path: &str, key_path: &str, udp_sock: std::sync::Arc<tokio::net::UdpSocket>, creds: InMemoryStore, allocs: AllocationManager) -> anyhow::Result<()> { pub async fn serve_tls(
bind: &str,
cert_path: &str,
key_path: &str,
udp_sock: std::sync::Arc<tokio::net::UdpSocket>,
creds: InMemoryStore,
allocs: AllocationManager,
) -> anyhow::Result<()> {
let certs = load_certs(cert_path)?; let certs = load_certs(cert_path)?;
let key = load_private_key(key_path)?; let key = load_private_key(key_path)?;
@ -81,24 +91,39 @@ pub async fn serve_tls(bind: &str, cert_path: &str, key_path: &str, udp_sock: st
while buffer.len() >= 20 { while buffer.len() >= 20 {
let len = u16::from_be_bytes([buffer[2], buffer[3]]) as usize; let len = u16::from_be_bytes([buffer[2], buffer[3]]) as usize;
let total = len + 20; let total = len + 20;
if buffer.len() < total { break; } if buffer.len() < total {
break;
}
let chunk = buffer.drain(..total).collect::<Vec<u8>>(); let chunk = buffer.drain(..total).collect::<Vec<u8>>();
if let Ok(msg) = parse_message(&chunk) { if let Ok(msg) = parse_message(&chunk) {
// process message similarly to UDP path // process message similarly to UDP path
if let Some(_mi_attr) = find_message_integrity(&msg) { if let Some(_mi_attr) = find_message_integrity(&msg) {
let username_attr = msg.attributes.iter().find(|a| a.typ == ATTR_USERNAME); let username_attr = msg
.attributes
.iter()
.find(|a| a.typ == ATTR_USERNAME);
if let Some(u) = username_attr { if let Some(u) = username_attr {
if let Ok(username) = std::str::from_utf8(&u.value) { if let Ok(username) = std::str::from_utf8(&u.value)
let pw = creds_clone.get_password(username).await; {
let pw =
creds_clone.get_password(username).await;
if let Some(password) = pw { if let Some(password) = pw {
let valid = validate_message_integrity(&msg, &password); let valid = validate_message_integrity(
&msg, &password,
);
if valid { if valid {
tracing::info!("MI valid for user {} on TLS", username); tracing::info!(
if msg.header.msg_type == METHOD_ALLOCATE { "MI valid for user {} on TLS",
username
);
if msg.header.msg_type
== METHOD_ALLOCATE
{
match alloc_clone.allocate_for(peer, udp_clone.clone()).await { match alloc_clone.allocate_for(peer, udp_clone.clone()).await {
Ok(relay_addr) => { Ok(relay_addr) => {
let mut out = Vec::new(); let mut out = Vec::new();
out.extend_from_slice(&RESP_BINDING_SUCCESS.to_be_bytes()); let success_type = msg.header.msg_type | CLASS_SUCCESS;
out.extend_from_slice(&success_type.to_be_bytes());
out.extend_from_slice(&0u16.to_be_bytes()); out.extend_from_slice(&0u16.to_be_bytes());
out.extend_from_slice(&MAGIC_COOKIE_BYTES); out.extend_from_slice(&MAGIC_COOKIE_BYTES);
out.extend_from_slice(&msg.header.transaction_id); out.extend_from_slice(&msg.header.transaction_id);
@ -117,54 +142,528 @@ pub async fn serve_tls(bind: &str, cert_path: &str, key_path: &str, udp_sock: st
} }
Err(e) => tracing::error!("allocate failed after MI valid (tls): {:?}", e), Err(e) => tracing::error!("allocate failed after MI valid (tls): {:?}", e),
} }
} else if msg.header.msg_type
== METHOD_CREATE_PERMISSION
{
if alloc_clone
.get_allocation(&peer)
.is_none()
{
tracing::warn!("create-permission without allocation from {} (tls)", peer);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!("failed to write tls error: {:?}", e);
}
continue;
}
let mut added = 0usize;
for attr in msg
.attributes
.iter()
.filter(|a| {
a.typ
== ATTR_XOR_PEER_ADDRESS
})
{
if let Some(peer_addr) =
decode_xor_peer_address(
&attr.value,
&msg.header
.transaction_id,
)
{
match alloc_clone.add_permission(peer, peer_addr) {
Ok(()) => {
tracing::info!("added TLS permission for {} -> {}", peer, peer_addr);
added += 1;
}
Err(e) => tracing::error!("failed to persist TLS permission {} -> {}: {:?}", peer, peer_addr, e),
}
} else {
tracing::warn!("invalid XOR-PEER-ADDRESS via TLS from {}", peer);
}
}
let resp = if added == 0 {
build_error_response(
&msg.header,
400,
"No valid XOR-PEER-ADDRESS",
)
} else {
build_success_response(
&msg.header,
)
};
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!("failed to write tls response: {:?}", e);
}
continue;
} else if msg.header.msg_type
== METHOD_CHANNEL_BIND
{
let allocation = match alloc_clone
.get_allocation(&peer)
{
Some(a) => a,
None => {
tracing::warn!(
"channel-bind without allocation from {} (tls)",
peer
);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
let channel_attr = msg
.attributes
.iter()
.find(|a| {
a.typ == ATTR_CHANNEL_NUMBER
});
let peer_attr = msg
.attributes
.iter()
.find(|a| {
a.typ
== ATTR_XOR_PEER_ADDRESS
});
let channel = match channel_attr
.and_then(|attr| {
if attr.value.len() >= 4 {
Some(
u16::from_be_bytes(
[
attr.value
[0],
attr.value
[1],
],
),
)
} else {
None
}
}) {
Some(c) => c,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing CHANNEL-NUMBER",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
if channel < 0x4000
|| channel > 0x7FFF
{
let resp = build_error_response(
&msg.header,
400,
"Channel Out Of Range",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
let peer_addr = match peer_attr
.and_then(|attr| {
decode_xor_peer_address(
&attr.value,
&msg.header
.transaction_id,
)
}) {
Some(addr) => addr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing XOR-PEER-ADDRESS",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
if !allocation
.is_peer_allowed(&peer_addr)
{
let resp = build_error_response(
&msg.header,
403,
"Peer Not Permitted",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
match alloc_clone
.add_channel_binding(
peer, channel, peer_addr,
) {
Ok(()) => {
tracing::info!(
"bound channel 0x{:04x} for {} -> {} over TLS",
channel,
peer,
peer_addr
);
let resp =
build_success_response(
&msg.header,
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls response: {:?}",
e
);
}
}
Err(e) => {
tracing::error!(
"failed TLS channel binding {} -> {} (0x{:04x}): {:?}",
peer,
peer_addr,
channel,
e
);
let resp = build_error_response(
&msg.header,
500,
"Channel Binding Failed",
);
if let Err(e2) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e2
);
}
}
}
continue;
} else if msg.header.msg_type
== METHOD_SEND
{
let allocation = match alloc_clone
.get_allocation(&peer)
{
Some(a) => a,
None => {
tracing::warn!(
"send without allocation from {} (tls)",
peer
);
let resp = build_error_response(
&msg.header,
437,
"Allocation Mismatch",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
let peer_attr = msg
.attributes
.iter()
.find(|a| {
a.typ
== ATTR_XOR_PEER_ADDRESS
});
let data_attr = msg
.attributes
.iter()
.find(|a| a.typ == ATTR_DATA);
let peer_addr = match peer_attr
.and_then(|attr| {
decode_xor_peer_address(
&attr.value,
&msg.header
.transaction_id,
)
}) {
Some(addr) => addr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing XOR-PEER-ADDRESS",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
let data_attr = match data_attr {
Some(attr) => attr,
None => {
let resp = build_error_response(
&msg.header,
400,
"Missing DATA Attribute",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
};
if !allocation
.is_peer_allowed(&peer_addr)
{
let resp = build_error_response(
&msg.header,
403,
"Peer Not Permitted",
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e
);
}
continue;
}
match allocation
.send_to_peer(
peer_addr,
&data_attr.value,
)
.await
{
Ok(sent) => {
tracing::info!(
"forwarded {} bytes from {} to {} via TLS session",
sent,
peer,
peer_addr
);
let resp =
build_success_response(
&msg.header,
);
if let Err(e) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls response: {:?}",
e
);
}
}
Err(e) => {
tracing::error!(
"failed to send payload from {} to {} via TLS: {:?}",
peer,
peer_addr,
e
);
let resp =
build_error_response(
&msg.header,
500,
"Peer Send Failed",
);
if let Err(e2) = tls_stream
.write_all(&resp)
.await
{
tracing::error!(
"failed to write tls error: {:?}",
e2
);
}
}
}
continue;
} }
let resp = build_success_response(&msg.header); let resp =
if let Err(e) = tls_stream.write_all(&resp).await { build_success_response(&msg.header);
if let Err(e) =
tls_stream.write_all(&resp).await
{
tracing::error!("failed to write tls response: {:?}", e); tracing::error!("failed to write tls response: {:?}", e);
} }
continue; continue;
} else { } else {
tracing::info!("MI invalid for user {} (tls)", username); tracing::info!(
"MI invalid for user {} (tls)",
username
);
} }
} else { } else {
tracing::info!("unknown user {} (tls)", username); tracing::info!(
"unknown user {} (tls)",
username
);
} }
} }
} }
} }
if msg.header.msg_type == METHOD_ALLOCATE { if msg.header.msg_type == METHOD_ALLOCATE {
match alloc_clone.allocate_for(peer, udp_clone.clone()).await { match alloc_clone
.allocate_for(peer, udp_clone.clone())
.await
{
Ok(relay_addr) => { Ok(relay_addr) => {
let mut out = Vec::new(); let mut out = Vec::new();
out.extend_from_slice(&RESP_BINDING_SUCCESS.to_be_bytes()); let success_type =
msg.header.msg_type | CLASS_SUCCESS;
out.extend_from_slice(
&success_type.to_be_bytes(),
);
out.extend_from_slice(&0u16.to_be_bytes()); out.extend_from_slice(&0u16.to_be_bytes());
out.extend_from_slice(&MAGIC_COOKIE_BYTES); out.extend_from_slice(&MAGIC_COOKIE_BYTES);
out.extend_from_slice(&msg.header.transaction_id); out.extend_from_slice(
let attr_val = encode_xor_relayed_address(&relay_addr, &msg.header.transaction_id); &msg.header.transaction_id,
out.extend_from_slice(&ATTR_XOR_RELAYED_ADDRESS.to_be_bytes()); );
out.extend_from_slice(&((attr_val.len() as u16).to_be_bytes())); let attr_val = encode_xor_relayed_address(
&relay_addr,
&msg.header.transaction_id,
);
out.extend_from_slice(
&ATTR_XOR_RELAYED_ADDRESS.to_be_bytes(),
);
out.extend_from_slice(
&((attr_val.len() as u16).to_be_bytes()),
);
out.extend_from_slice(&attr_val); out.extend_from_slice(&attr_val);
while (out.len() % 4) != 0 { out.extend_from_slice(&[0]); } while (out.len() % 4) != 0 {
out.extend_from_slice(&[0]);
}
let total_len = (out.len() - 20) as u16; let total_len = (out.len() - 20) as u16;
let len_bytes = total_len.to_be_bytes(); let len_bytes = total_len.to_be_bytes();
out[2] = len_bytes[0]; out[3] = len_bytes[1]; out[2] = len_bytes[0];
if let Err(e) = tls_stream.write_all(&out).await { out[3] = len_bytes[1];
tracing::error!("failed to write tls response: {:?}", e); if let Err(e) = tls_stream.write_all(&out).await
{
tracing::error!(
"failed to write tls response: {:?}",
e
);
} }
} }
Err(e) => tracing::error!("allocate failed (tls): {:?}", e), Err(e) => tracing::error!(
"allocate failed (tls): {:?}",
e
),
} }
continue; continue;
} }
// default: send 401 challenge // default: send 401 challenge
let nonce = format!("nonce-{}", uuid::Uuid::new_v4()); let nonce = format!("nonce-{}", uuid::Uuid::new_v4());
let resp = build_401_response(&msg.header, "niom-turn.local", &nonce, 401); let resp = build_401_response(
&msg.header,
"niom-turn.local",
&nonce,
401,
);
if let Err(e) = tls_stream.write_all(&resp).await { if let Err(e) = tls_stream.write_all(&resp).await {
tracing::error!("failed to write tls 401: {:?}", e); tracing::error!("failed to write tls 401: {:?}", e);
} }
} else { } else {
tracing::debug!("failed to parse stun message on tls from {}", peer); tracing::debug!(
"failed to parse stun message on tls from {}",
peer
);
} }
} }
} }